Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding.

نویسندگان

  • Yusheng Zhao
  • Zuo Li
  • Guozheng Liu
  • Yong Jiang
  • Hans Peter Maurer
  • Tobias Würschum
  • Hans-Peter Mock
  • Andrea Matros
  • Erhard Ebmeyer
  • Ralf Schachschneider
  • Ebrahim Kazman
  • Johannes Schacht
  • Manje Gowda
  • C Friedrich H Longin
  • Jochen C Reif
چکیده

Hybrid breeding promises to boost yield and stability. The single most important element in implementing hybrid breeding is the recognition of a high-yielding heterotic pattern. We have developed a three-step strategy for identifying heterotic patterns for hybrid breeding comprising the following elements. First, the full hybrid performance matrix is compiled using genomic prediction. Second, a high-yielding heterotic pattern is searched based on a developed simulated annealing algorithm. Third, the long-term success of the identified heterotic pattern is assessed by estimating the usefulness, selection limit, and representativeness of the heterotic pattern with respect to a defined base population. This three-step approach was successfully implemented and evaluated using a phenotypic and genomic wheat dataset comprising 1,604 hybrids and their 135 parents. Integration of metabolomic-based prediction was not as powerful as genomic prediction. We show that hybrid wheat breeding based on the identified heterotic pattern can boost grain yield through the exploitation of heterosis and enhance recurrent selection gain. Our strategy represents a key step forward in hybrid breeding and is relevant for self-pollinating crops, which are currently shifting from pure-line to high-yielding and resilient hybrid varieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing heterotic groups for hybrid breeding in crop plants with emphasizing on forage crops

Exploitation of heterosis in hybrid breeding and development of synthetic cultivars is an essential procedure in plant breeding programs. The main goal of hybrid breeding programs is to select desirable parental genotypes to maximize the expression of heterosis. However, since development of high yielding hybrids and synthetic cultivars are costly and time-consuming, the accurate prediction of ...

متن کامل

Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.

Maize (Zea mays L.) serves as model plant for heterosis research and is the crop where hybrid breeding was pioneered. We analyzed genomic and phenotypic data of 1254 hybrids of a typical maize hybrid breeding program based on the important Dent × Flint heterotic pattern. Our main objectives were to investigate genome properties of the parental lines (e.g., allele frequencies, linkage disequilib...

متن کامل

Evaluation of genotype × environment interaction in durum wheat (Triticum turgidum var. durum L.) regional yield trials

The objective of this experiment was to analyze genotype × environment (GE) interaction for grain yield of 20 durum wheat genotypes to identify the yield stability and adaptability of genotypes using GGE biplot method as well as some univariate stability statistics. The genotypes were evaluated in three rainfed stations of Sararood (Kermanshah), Maragheh and Shirvan, Iran under both rainfed and...

متن کامل

The pure-line hybrid concept traces its roots back to experiments on heterosis and its complement in- breeding conducted by SHULL (1908, 1909) at Cold Spring Harbor Laboratories in New York, and EAST

Today the concept of heterotic groups and patterns is fundamental to hybrid breeding theory and practice. Our objectives were to (i) review various hypotheses on the causes of heterosis in maize and on the experimental evidence supporting or refuting them, (ii) examine advantages and disadvantages of the concept of heterotic groups and patterns, (iii) describe the status of heterotic patterns i...

متن کامل

Nuclear and Cytoplasmic Inheritance of Salt Tolerance in Bread Wheat Plants Based on Ion Contents and Biological Yield

Although inter-variety variability for salt tolerance has been reported in bread wheat plants, little information is available on the genetic control of ion contents and biomass yield under saline conditions. A diallel cross, including reciprocals of two salt tolerant, two moderately tolerant and two sensitive Iranian and exotic bread wheat varieties, was analyzed to investigate the inheritance...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 51  شماره 

صفحات  -

تاریخ انتشار 2015